Microenvironment and Immunology Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity

نویسندگان

  • Francis Mussai
  • Sharon Egan
  • Stuart Hunter
  • Hannah Webber
  • Jonathan Fisher
  • Rachel Wheat
  • Carmel McConville
  • Yordan Sbirkov
  • Kate Wheeler
  • Gavin Bendle
  • Kevin Petrie
  • John Anderson
  • Louis Chesler
  • Carmela De Santo
چکیده

Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an argininedeplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34þ progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1–specific T-cell receptor and GD2-specific chimeric antigen receptor–engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches. Cancer Res; 75(15); 1–11. 2015 AACR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroblastoma Arginase Activity Creates an Immunosuppressive Microenvironment That Impairs Autologous and Engineered Immunity.

Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress...

متن کامل

Engineered tumor-infiltrating macrophages as gene delivery vehicles for interferon-α activates immunity and inhibits breast cancer progression

An immunosuppressive tumor microenvironment is a cancer hallmark and a major impediment to successful immunotherapy. We engineered hematopoietic progenitors to target expression of an interferon-α (IFNα) transgene specifically to their monocytic progeny, including tumor-infiltrating macrophages. Mice chimeric for these IFNα-expressing macrophages showed activation of innate and adaptive immune ...

متن کامل

Tumor-Educated CD11bIa Regulatory Dendritic Cells Suppress T Cell Response through Arginase I

Tumors can induce generation and accumulation of the immunosuppressive cells such as regulatory T cells in the tumor microenvironment, contributing to tumor escape from immunological attack. Although dendritic cell (DC)-based cancer vaccine can initiate antitumor immune response, regulatory DC subsets involved in the tolerance induction attracted much attention recently. Our previous studies de...

متن کامل

RPN13/ADRM1 inhibitor reverses immunosuppression by myeloid-derived suppressor cells

Myeloid-derived-suppressor cells (MDSCs) are key mediators of immune suppression in the ovarian tumor microenvironment. Modulation of MDSC function to relieve immunosuppression may enhance the immunologic clearance of tumors. The bis-benzylidine piperidone RA190 binds to the ubiquitin receptor RPN13/ADRM1 on the 19S regulatory particle of the proteasome and directly kills ovarian cancer cells b...

متن کامل

Fractalkine (CX3CL1)- and interleukin-2-enriched neuroblastoma microenvironment induces eradication of metastases mediated by T cells and natural killer cells.

Fractalkine (FKN) is a unique CX3C chemokine (CX3CL1) known to induce both adhesion and migration of leukocytes mediated by a membrane-bound and a soluble form, respectively. Its function is mediated through CX3C receptor (CX3CR), which is expressed by T(H)1 immune cells including T cells and natural killer (NK) cells. FKN was shown to be expressed in >90% of 68 neuroblastoma samples as determi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015